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Abstract

Introduction Virtually all existing expectation-maximi-

zation (EM) algorithms for quantitative trait locus (QTL)

mapping overlook the covariance structure of genetic

effects, even though this information can help enhance the

robustness of model-based inferences.

Results Here, we propose fast EM and pseudo-EM-based

procedures for Bayesian shrinkage analysis of QTLs,

designed to accommodate the posterior covariance struc-

ture of genetic effects through a block-updating scheme.

That is, updating all genetic effects simultaneously through

many cycles of iterations.

Conclusion Simulation results based on computer-gen-

erated and real-world marker data demonstrated the ability

of our method to swiftly produce sensible results regarding

the phenotype-to-genotype association. Our new method

provides a robust and remarkably fast alternative to full

Bayesian estimation in high-dimensional models where the

computational burden associated with Markov chain Monte

Carlo simulation is often unwieldy. The R code used to fit

the model to the data is provided in the online supple-

mentary material.

Introduction

Identifying the genetic basis (number of genes, along with

their effects and genomic positions) of complex phenotypic

traits is a fundamental goal of modern genetics. A genomic

region that is closely linked to a gene that contributes to the

variation in a quantitative trait of interest is called a

quantitative trait locus (QTL), and the process of identi-

fying QTLs and evaluating their phenotypic effects is

known as QTL mapping.

The mapping of multiple QTLs is typically carried out by

regressing the phenotypic trait values of n study individuals

on their genotypes at p candidate loci. Here, we focus on

experimental crosses derived from inbred lines, more spe-

cifically on backcross (BC) or double haploids (DH) prog-

eny, where only two genotypes are possible at any locus

(Carbonell et al. 1993; Broman 2001). Letting yi denote the

phenotypic trait value of individual i, we assume that

yi ¼ lþ
Xp

j¼1

/ij bj þ ei ð1Þ

where /ij is a dummy variable for the genotype of

individual i at locus j (j = 1,…, p), herein coded as 0 for
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one genotype and 1 for the other; l is the intercept; bj

represents the effect of genotype substitution at locus j

(j = 1,…, p), and ei (i = 1,…, n) are random residual

errors assumed to be mutually independent and normally

distributed around zero with common variance r0
2. Model

(1) can be compactly written in matrix form as

y ¼ l 1n þ U bþ e; ð2Þ

where y ¼ ðy1; . . .; ynÞT, b ¼ ðb1; . . .; bpÞT, e ¼ ðe1; . . .;

enÞT, U denotes the n 9 p design matrix encompassing the

genotype profiles of the p loci, and 1n is the n-dimensional

column vector of ones.

In large-scale QTL mapping studies, most of the can-

didate loci usually have weak or no effect on the quanti-

tative trait of interest (Xu 2003; Yi and Xu 2008; O’Hara

and Sillanpää 2009). This is more so when the underlying

biology of the trait under study is also sparse. In addition,

strong correlations between genotypes of dense markers on

the same chromosome induce multicollinearity issues (Xu

2003).

In saturated regression models (i.e., regression models

with p [ n) the ordinary least squares (OLS) method (or

equivalently maximum likelihood estimation for linear

models with Gaussian residuals) is prone to over-fitting the

data, due to a lack of degrees of freedom (curse of

dimensionality). The model will essentially adjust to ran-

dom features of the particular dataset on which it is trained,

rather than describing the biologically interesting rela-

tionship on which the modeling effort is focused. As a

result, the model will achieve a nearly perfect fit to the data

at hand while having poor predictive performance (Lande

and Thompson 1990; Bishop and Tipping 2003). Multi-

collinearity issues often exacerbate the difficulty of esti-

mating genetic effects in the presence of fine-scale marker

maps, further undermining the usefulness of standard

estimation procedures such as the OLS.

When the underlying biology is known to be sparse in

large-scale genetic association studies, it becomes essential

to seek out a parsimonious or sparse model representation

which can adequately describe the genotype-to-phenotype

mapping without over-fitting (Kao et al. 1999; Ball 2001;

Sen and Churchill 2001; Broman and Speed 2002; Sillan-

pää and Corander 2002; Yi and Xu 2008). Several methods

have been proposed to this end from both the classical and

Bayesian perspectives. These can roughly be classified into

variable selection and regularization methods (Xu 2007).

Variable selection methods, in the vein of classical step-

wise selection techniques Gimelfarb and Lande (1994a, b);

Kao et al. 1999; Broman and Speed 2002; Miller 2002) and

Bayesian ‘‘spike-and-slab’’ methods like stochastic search

variable selection (SSVS; George and McCulloch 1993; Yi

et al. 2003; Mutshinda et al. 2009, 2011) and Bayes B-type

of methods (Meuwissen et al. 2001; Sillanpää and

Bhattacharjee 2005, 2006), involve the idea of pruning (i.e.,

discarding) the allegedly redundant predictors.

On the other hand, the ‘‘selection-free’’ regularization or

shrinkage methods involve all potential predictors, but

require (through a suitable penalty function or a sparsity-

inducing prior in the Bayesian framework) that spurious

effects (i.e., the effects of redundant variables) be auto-

matically shrunken towards zero. Ridge regression (Hoerl

and Kennard 1970; Myers 1992; Whittaker et al. 2000;

Malo et al. 2008), the least absolute shrinkage and selection

operator (LASSO; Tibshirani 1996; Li and Sillanpää

2012b) and their Bayesian analogues (Xu 2003; Wang et al.

2005; Yi and Xu 2008; de los Campos et al. 2009; Sun

et al. 2010; Mutshinda and Sillanpää 2010, 2011) fall under

the umbrella of shrinkage methods.

A significance effect size threshold for declaring QTLs

is typically determined through a permutation-based

method (Churchill and Doerge 1994). This method consists

of repeatedly fitting the model to the data with the geno-

typic values held fix while reshuffling the phenotypic val-

ues to eliminate causal relationships so that any apparent

marker-to-phenotype association can effectively be attrib-

uted to chance alone. Retaining the largest (absolute) effect

size estimate under each phenotype permutation as test

statistic yields an empirical distribution of the test statistic

under the null hypothesis of no phenotype-to-genotype

association, from which a suitable quantile, e.g., the tenth

percentile, can be selected as significance threshold for

declaring QTLs.

The Bayesian shrinkage methods for QTL mapping (Xu

2003; Mutshinda and Sillanpää 2010, 2011) and genomic

breeding value (GBV) estimation (de los Campos et al.

2009; Cleveland et al. 2010) have so far mostly relied on

Markov chain Monte Carlo (MCMC) methods (Gilks et al.

1996; Gelman et al. 2003) for posterior simulation.

However, in the presence of huge amounts of potentially

correlated markers, MCMC samplers are prone to poor

mixing (slow convergence). Alternative model fitting

approaches that can perform fast and yet adequately

describe the genotype-to-phenotype relationship without

over-fitting are therefore needed. Maximum a posteriori

(MAP) finding methods are enjoying increasing interest in

this respect (Xu 2010; Yi and Banerjee 2009; Sun et al.

2010; Cai et al. 2011; Li and Sillanpää 2012a). It is how-

ever often not feasible to analytically maximize the pos-

terior distribution, making the recourse to iterative

procedures imperative in many settings.

The expectation-maximization (EM) algorithm (Demp-

ster et al. 1977; McLachlan and Krishnan 1997) provides an

effective tool for MAP estimation in many situations.

Applications of the EM algorithm in QTL mapping include

Xu (2010), Yi and Banerjee (2009) and Sun et al. (2010).

Recently, Hayashi and Iwata (2010) adapted the EM
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algorithm of Yi and Banerjee (2009) for GBV estimation (see

also Shepherd et al. 2010; Kärkkäinen and Sillanpää 2012).

Extant EM algorithms for genetic association typically

overlook the co-variance structure of genetic effects as

these are usually updated one at a time. However, an

account for the co-variance information can enhance the

model robustness to guarantee that repeated model fitting

to the same dataset will produce roughly the same results

(Kabán 2007). Most of all, it is more interesting to give a

sense of the full posterior distribution of genetic effects,

rather than focusing on the MAP point estimates.

Here, we develop fast block-updating EM and pseudo-

EM algorithms for Bayesian shrinkage analysis of QTLs

designed to provide not only the MAP estimates of genetic

effects, but also their posterior covariance matrix involving

accuracy estimates (variances) and co-variances that can be

useful in subsequent analyses. Here, block-updating

implies that all genetic effects are updated in tandem rather

than one at a time. We consider two cases here: (1) inde-

pendence model, where genetic effects are assumed to be

independent in their joint prior. For this case, we use a full

probability model and our algorithm is a block-updating

EM-algorithm. (2) Dependence model, where genetic

effects are assumed to be dependent in their joint prior. For

this model, we use a pseudo-EM algorithm implying the

presence of inconsistency among our updating steps since

we are not using a full probability model (Makhuvha et al.

1997; Heckerman et al. 2000; Lunn et al. 2009; Jackson

et al. 2009; Lowd and Shamaei 2011). We have done this to

simplify computations and speed up the algorithm. The

posterior covariance structure of genetic effects obtained

from our analysis can be used in Monte Carlo-based pre-

dictive inference. We investigate the performance of our

method on simulated data, and use it to analyze real data

from the North American Barley Genome Mapping project.

Materials and methods

Hierarchical specification of sparsity-inducing priors

A Student’s t prior is independently specified on each

genetic effect, in a hierarchical fashion. More specifically,

we assume that a priori, bjjr2
j �Nð0; r2

j Þ and r2
j � Inv�

Gammaða; kÞ or equivalently, sj ¼ 1=r2
j �Gamma ða; kÞ

independently for ðj ¼ 1; . . .; pÞ. Differences in the poste-

riors, pðr2
j jDataÞ of locus-specific variances will induce

differential shrinkage of genetic effects across loci.

Along the lines of Yi and Banerjee (2009), we consider

the variances rj
2 as missing, and integrate them out with the

view that the hyper-parameters a and k can be cautiously

selected to induce the desired sparseness property.

The marginal (or unconditional) prior of bj is obtained as

pðbjÞ ¼
R1

0

pðbjjsjÞpðsjÞdsj ¼ kaC ðaþ 1
2
Þ=ð

ffiffiffiffiffiffi
2p
p

CðaÞÞðkþ

b2
j = 2Þ�ð2aþ1Þ=2

, where Cð�Þ denotes Euler’s Gamma func-

tion: CðzÞ ¼
R1

0
tz�1e�tdt, z [ 0. It turns out that p(bj) can

be written as

p ðbjÞ ¼
Cð v þ 1

2
Þ

r
ffiffiffiffiffi
vp
p

Cðv
2
Þ 1þ 1

v
ðbj=rjÞ2

� ��ðv þ 1Þ=2

; ð3Þ

and recognized as a Student’s t probability density function

with scale parameter r ¼
ffiffiffiffiffiffiffiffi
k=a

p
and v ¼ 2 a degrees of

freedom (for more details see appendix A in Electronic

Supplementary Material (ESM), and also Tipping 2001;

Tipping and Lawrence 2005).

So, a Student’s t prior with specific scale parameter and

degrees of freedom can be obtained under this framework

by appropriately selecting the hyper-parameters a and k. In

particular, the Jeffreys’ prior p ðsjÞ / 1=jsjj arises when a
and k are set to zero, leading to the improper marginal prior

pðbjÞ / 1=jbjj with an infinite mode at zero. When v is set

to one (a = 1/2), pðbjÞ is Cauchy, and pðbjÞ becomes

N ð0; r2
j Þ as v ? ?.

The Inv� Gamma ða; kÞ prior imposed on the locus-

specific variances, rj
2, can alternatively be expressed as a

scaled inverse chi-square distribution with scale parameter

s2 ¼ 2 k= v and m = 2a degrees of freedom, which we

denote as Inv� v2ðm; s2Þ. The probability density func-

tion of the Inv� v2ðm; s2Þ distribution is given by

p ðr2
j jv; sÞ / ðr2

j Þ
� ðvþ 2Þ=2

exp ð� v s2=2 r2
j Þ (Gelman

et al. 2003).

The conjugacy of the Gaussian priors independently

assumed on the locus-specific effects, bjðj ¼ 1; . . .; pÞ,
implies that, conditionally on the variance parameters

r2
j ðj ¼ 1; . . .; pÞ, the vector b ¼ ðb1; . . .; bpÞT is a posteriori

(multivariate) Gaussian around the MAP estimate b̂. An

analytical expression of b̂ is available in closed form (see

below). Moreover, an approximate posterior covariance

matrix, R̂b, of b can be derived in closed form through

Laplace’s quadratic approximation to the log-posterior

around its mode (Gelman et al. 2003).

If we assume uniform priors independently on the

residual variance, r2
0, and the intercept parameter l, i.e.,

pðl; r2
0Þ / 1, the posterior distribution of r2

0 conditionally

on b and l, is Inverse-Gamma with parameters a ¼
ðn=2Þ � 1 and b ¼ 1

2

Pn
i¼ 1 ðyi � l � Ui bÞ2. Since the

mode of the Inverse-Gamma distribution with parameters a
and b is given by (see Gelman et al. 2003, p. 574–575)

b=ðaþ 1Þ, it follows that the MAP estimate of r2
0, condi-

tionally on b and l, is given by the familiar formula
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r̂2
0 ¼

1

n

Xn

i¼1

ðyi � l � Ui bÞ2 ð4aÞ

Turning now to the intercept parameter l, the overall

likelihood function based on (2) is Lðy; l; b; r2
0;UÞ /

expf� ½ðy� l 1n �U bÞT R ðy� l 1n � U bÞ�=2g, where

R ¼ r�2
0 In and In is the n 9 n identity matrix. Focusing

on l, this likelihood function can be written as

Lðy; l; b; r2
0;UÞ / expf� ½ðl 1n � y�U bÞT R ðl 1n � y�

U bÞ�=2g. Under the uniform prior pðl; r2
0Þ / 1 assumed

here, the conditional posterior of l given by p ðljy; b; r2
0Þ

is proportional to expf� ½ðl 1n � y �U bÞT R ðl 1n � y�
U bÞ�=2g, which is maximized when l 1n ¼ ðy� U bÞ.
So, conditionally on b and r2

0, the MAP estimate of l is

given by

l̂ ¼ mean ðy� U b̂Þ : ð4bÞ

Before delving into the details of our block-updating

EM and pseudo-EM procedures, it is worth giving some

insight in the derivation of analytic expressions of b̂ and

R̂b, which are the building blocks of our EM and pseudo-

EM algorithms.

Analytical expressions of the MAP and the posterior

covariance matrix of genetic effects

As already pointed out earlier, the likelihood function for

our model based on (2) is Lðy; b; r2
0;UÞ / expf

� ½ðy� l 1n � U bÞT R ðy� l 1n � U bÞ�=2g, with R ¼
r�2

0 In and In denoting the n 9 n identity matrix. In the

sequel, we drop the conditioning on U for ease of notation.

The prior specification for the parameter vector b is

b�Npð0;K�1Þ, where Np denotes the p-dimensional mul-

tivariate normal distribution, K ¼ diag ð s1; . . .; spÞ is a

p 9 p diagonal matrix comprising effect-specific preci-

sions, sj ¼ 1=r2
j , on the main diagonal. Note that there is a

different variance (precision) hyper-parameter for each

component of b. This amounts to assigning different

weights (corresponding to the idiosyncratic variances) to

the columns of U, which may result in sparseness as the

independent variables corresponding to columns with

nearly zero weights are essentially pruned from the model.

The posterior of b results from the combination of the

likelihood and prior as

pðbjy; l; r2
0; sÞ / exp f� ½ðy� l 1n � U bÞT

R ðy� l 1n � U bÞ þ bTK b�=2g;
ð5Þ

where s ¼ ð s1; . . .; spÞT. The MAP or posterior mode of b is

given by b̂ ¼ arg min
b
f½ðy� l 1n � UbÞTR ðy� l 1n �

UbÞ þ bTK b�=2g, and an approximate posterior

covariance matrix of b̂ deriving from Laplace’s quadratic

approximation to the log-posterior around its mode (Gelman

et al. 2003) is R̂b ¼ ð�rbrb log postðb̂ÞÞ�1
. It turns out that

bjy; r2
0; s�Npðb̂; R̂bÞ, with closed-form expressions of R̂b

and b̂ given by (for more details see appendix B in ESM)

R̂b ¼ ðUTR Uþ KÞ�1 ¼ ðr�2
0 UTUþ KÞ�1; ð6aÞ

b̂jl̂ ¼ R̂b UTR ðy� l̂ 1nÞ ¼ r̂�2
0 R̂b UT ðy� l̂ 1nÞ: ð6bÞ

Tipping (2001) already derived formulas (6a) and (6b)

in a Machine Learning context, by analytically computing

the normalizing constant of the posterior distribution

p ðbjy; s; r2
0Þ ¼ p ðyjb; r2

0Þ p ðbjsÞ
�R

p ðyjb; r2
0Þ p ðbjsÞ d b

as a convolution of two Gaussians. However, it is good to

keep in mind that Henderson (1950, 1970) offered

essentially these same equations for random effects in the

classical Gaussian mixed model context much earlier.

Description of the block-updating EM and pseudo-EM

algorithm

Following Yi and Banerjee (2009), we proceed by treating

the locus-specific variance (precision) parameters r2
j ðsj ¼

1=r2
j Þ as missing, and require their conditional expectations

given the data and the current estimate of b, i.e., r̂2
j ¼

E ½r2
j jy; b̂� (or equivalently ŝj ¼ 1=r̂2

j ) whenever these

variance parameters are required.

Given the current estimates ŝ ¼ ð ŝ1; . . .; ŝpÞ, r̂2
0 and l̂,

we know (see above) that bjy; l̂; ŝ; r̂2
0�Np ðb̂; R̂bÞ, with

R̂b and b̂ defined as in (6a) and (6b). It can also be shown

(see appendix C in ESM) that r2
j jy; b̂� Inv�

v2ð 1þ vj; ½vj s2
j þ b̂2

j � = ½1þ vj�Þ. From the properties of

the scaled inverse-chi-square distribution (Gelman et al.

2003, pp. 574–575), it follows that E½r2
j jy; b̂ � ¼ ðvj s2

j þ
b̂2

j Þ = ðvj � 1Þ for j ¼ 1; . . .; p and vj [ 1.

We are therefore in a situation where the focal param-

eters, b, have a tractable distribution given latent variables

(s), which in turn have a tractable distribution given b. This

enables us to use the EM algorithm (Dempster et al. 1977;

McLachlan and Krishnan 1997) to find b̂ and R̂b.

The EM algorithm alternates between two steps: con-

ditional expectation evaluation (E-step) and maximization

(M-step). The E-step of our algorithm consists in replacing

each r2
j ðj ¼ 1; . . .; pÞ by its conditional expectation

r̂2
j ¼ ðvjs

2
j þ b̂2

j Þ= ðvj � 1Þ; ð7Þ

(vj [ 1), where b̂j is the current estimate of bj or

equivalently, replacing each locus-specific precision

parameter sj ¼ 1=r2
j by
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ŝj ¼ ðvj � 1Þ= ðvjs
2
j þ b̂2

j Þ: ð8Þ

For independence model (when prior independence of

genetic effects is assumed), the updating steps (7) and (8)

follow a full probability model and our algorithm is a

standard EM-algorithm. For dependence model (when

prior dependence of genetic effects is assumed, see

Smoothing or explicit account of the dependence between

genetic effects of nearby loci below), the updating steps (7)

and (8) follow an inconsistent probability model and our

algorithm can be called as a pseudo-EM-algorithm. We

have done this to simplify calculations.

In the M-step, b is updated through (6a) and (6b), with

the estimate K̂ obtained in the E-step, and the current

values r̂2
0 and l̂ of the residual variance and the intercept

parameter, respectively, and subsequently updating the last

two parameter values through (4a) and (4b).

The E- and M-steps are meant to be iterated until a

convergence criterion, (e.g., jjb̂ðkÞ � b̂ðk�1Þjj=jjb̂ðkÞjj\d for

some sufficiently small d[ 0) is satisfied. A sensible

choice of initial parameter values is r2
0 ¼ varðyÞ,

l ¼ meanðyÞ, and all bj set to be small in absolute value,

but jjbjj 6¼ 0 is required to avoid a division by zero in the

first evaluation of the convergence criterion.

Crucially for us here, the posterior covariance structure

of b is accommodated by updating b as a block (cf. ter

Braak et al. 2005). However, the implementation of the

proposed EM and pseudo-EM algorithms may face com-

putational problems as we discuss next. We also point to a

couple of approaches to overcome these issues.

Computational issues

A potential hurdle in implementing our block-updating EM

and pseudo-EM algorithms may come from the inversion

of the p 9 p matrix ðUTR Uþ KÞ involved in (6a), which

can be prohibitive when p is very large. In cases where p is

much larger than n, and n is relatively small, the Woodbury

identity

ðKp� pþUT
p x n Rn� n Un� pÞ�1 ¼ K�1

p� p�K�1
p� p UT

p� n

ðR�1
n� nþUn� p K�1

p� p UT
p� nÞ

�1 Un� p K�1
p� p ð9Þ

(Zielke 1968; Golub and van Loan 1996; Li et al. 2002)

may help overcome this problem by requiring the inverse of

the low-dimensional n 9 n matrix ðR�1
n� nþUn� p K�1

p� p

UT
p� nÞ, instead of the larger p 9 p matrix ðUTRUþ KÞ,

provided that ðR�1
n� nþUn� p K�1

p� p UT
p� nÞ is invertible.

The involved p 9 p inverse matrix K�1 is straightforwardly

computed by replacing each element on the main diagonal of

K by its inverse. However, the Woodbury identity may be

impractical in large-scale problems with large sample size, n.

In such a case, one may require an estimate, b̂, of the genetic

effects by solving the linear system ðUTRUþ KÞ b ¼
UT R ð y� l 1nÞ for b through iterative methods such as

Gauss-Seidel iteration, in order to avoid the costly matrix

inversion involved in (6a). However, while addressing the

important issue of scalability, this approach eludes the

estimation of the posterior covariance matrix of genetic

effects (i.e., R̂b) and does not provide accuracy estimates.

Therefore, using iterative methods to approximate inverse

matrix involved in (6a) may be a better alternative in large-

scale problems.

Multicollinearity issues arising from intrinsic depen-

dence between marker genotypes at adjacent loci (the

columns of U) may also induce computational difficulties

(associated with matrix inversion). This is more so when

dealing with dense marker maps under low recombination

rate, as a result of consistent relationships between the

genotypes of successive markers. Jittering i.e., adding a

tiny random noise to each data point (Gelman and Hill

2007, p. 554) may help prevent the columns of U from

falling exactly on top of each other, although this is more

suitable for continuous variables. Note also that the addi-

tion of the diagonal matrix K to r�2
0 UTU in (6a) may, to

some extent, alleviate the collinearity issues associated

with the structure of U. However, the rescue effect of this

operation depends on the magnitude of diagonal values

of K.

Smoothing or explicit account of the dependence

between genetic effects of nearby loci

The covariance matrix involved in our EM algorithm was

analytically derived through Laplace’s quadratic approxi-

mation to the joint posterior of genetic effects. Linkage

disequilibrium (LD) induces strong dependency between

alleles (genotypes) of nearby loci on the same chromo-

some. The information about the strength of dependence

between the coefficients of neighboring loci can be

explicitly incorporated in the model by assuming prior

dependence of genetic effects. One way of doing this is to

replace the diagonal precision matrix, K, involved in (6a)

with a full matrix R ¼ fri;jg implementing an exponential

decay of the strength of dependence between the genetic

effects of loci i and j with the distance (physical or genetic)

di;j separating them. We propose that

ri;j ¼ 1=2 si I ði ¼ jÞ þ ffiffiffiffiffiffiffiffi
si sj
p

exp ðu di;jÞ
� �

; ð10Þ

where I(�) denotes the indicator function, and the

‘‘smoothing parameter’’ u [ 0 is intended to control the

degree of dependence between the genetic effects of loci i

and j located di;j units of distance apart from each other on

the same chromosome. The value of u needs to be
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specified by the analyst in such a way that the ensuing

precision matrix ðr�2 UTUþ RÞ is invertible. The factor

1/2 in Eq. (10) is introduced to guarantee that the variance

parameters in the two versions of the algorithm (without

and with smoothing) are on the same scale; in particular,

ri; i ¼ si. It is worth keeping in mind that R is (just like K) a

precision matrix, which explains the absence of a minus

sign in the exponent part of (10), since decreasing variance

corresponds to increasing precision and vice versa.

The smoothing property enforces the similarity between

genetic effects of nearby loci on the same chromosome,

which are expected to appear in LD blocks. It may however

happen that a locus effect is in opposite direction to the rest of

loci of the LD block in which it is supposed to fit. This

situation may result from a conflict between the two sources

of covariance information involved in ðr�2 UTUþ RÞ
namely, the data (through UTU) and the prior (through the

off-diagonal elements of R). This conflict can, however, be

solved by proceeding in two steps. First, fitting the model

without smoothing, i.e., updating the genetic effects through

Eqs. (6a) and (6b) to identify the directions of locus effects to

be used for each LD block, and then applying the reciprocal

genotype coding (Conti and Witte 2003; Fridley and Jenkins

2010) to each locus whose effect sign contrasts with that of

the LD blocks to which it is supposed to belong.

Finally, it is worth emphasizing that because the Eqs. (7)

or (8) used to update the variance components were orig-

inally derived assuming independence between loci, the

information in the dependence model with smoothing does

not go in all directions (Jackson et al. 2009). This means

that we are cutting feedback (direct influence) from adja-

cent genetic effects (due to prior dependence of genetic

effects) to the locus-specific variance component. This

corresponds to the two-stage estimation approach where in

the first stage, variance components are estimated from the

model with prior independent loci (without smoothing) and

then plugged in the model with prior dependent loci (with

smoothing) but with an appropriate account for uncertainty

(Heckerman et al. 2000; Lunn et al. 2009; Jackson et al.

2009; Lowd and Shamaei 2011).

Simulation studies

In this section, we report on two simulation studies

designed to evaluate the performance of our methodology.

In the first simulation study (Simulation study I), the

analyses are based on the block-updating EM algorithm

with (i.e., with no smoothing). The smoothing idea is

implemented in Simulation study II. Our analyses are based

on data with high heritabilities and small sample sizes

(which is typical in experimental crosses). However, the

methods should perform equally under small heritabilities

and large samples as suggested by Sillanpää and Hoti

(2007). All computations were performed in R (Develop-

ment Core Team 2011, http://www.R-project.org) version

2.13.2 on an AMD Turion X2 Dual, equipped with a 64-bit

operating system with 2.10 GHz processor and 4 GB of

RAM. The R code is provided in the ESM, appendix E.

Simulation study I

In this simulation study, the data generation process was

based on two different marker datasets. (1) The moderately

dense Barley marker data from the North American Barley

Genome Mapping project (Tinker et al. 1996). This dataset

involves 145 doubled haploid lines and 127 markers cover-

ing seven chromosomes, with an average distance of

10.5 cM between consecutive markers. The original dataset

involved 150 DH individuals, but five individuals with

missing phenotypes ‘‘number of days to heading averaged

across 25 different environments’’ were excluded from the

data (this phenotype is considered for real data analysis in the

next section). The few missing genotypes were imputed with

random draws from Bernoulli (0.5) before the analysis. (2) A

dense marker dataset simulated through the WinQTL Car-

tographer 2.5 program (Wang et al. 2006) and involving 100

BC individuals and 1,000 markers (i.e., 10 times as many

markers as individuals) spanning 2 chromosomes, with 500

markers each, and just 1 cM between consecutive markers.

In both cases, the underlying biology was set to be

sparse, assuming four QTLs only, namely at loci 4, 25, 50

and 65, with respective genetic effects set to 2.5, -2.5, 4

and -4. In the sequel, loci are identified by their marker

indices also referred to as marker numbers. The intercepts

were set to zero without loss of generality, and the residual

variances were set to 2 and 0.5 in the simulations based on

barley marker data and on the synthetic dense marker map,

respectively, yielding an average heritability of 0.80 in

both cases.

For simulations based on the barley markers, we gen-

erated 50 synthetic datasets, and fitted the model to each of

them under the following four hyper-parameter settings:

ðv¼ 5 ; s¼ 0:1Þ , ðv¼ 5 ; s¼ 0:25Þ, ðv¼ 5 ; s¼ 0:5Þ and

ðv¼ 2:5 ; s¼ 0:1 Þ.
To fit the model to the simulated data based on the dense

marker dataset involving 100 BC progeny and 1,000

markers, we used the hyper-parameter settings

ðv ¼ 5; s ¼ 0:05Þ, and utilized the Woodbury identity to

handle the large matrix inversion problem.

The convergence was assumed to occur after k iterations if

jjb̂ðkÞ � b̂ðk�1Þjj=jjb̂ðkÞjj \ 10� 6. In both cases, the algo-

rithm proved to converge after just 20–25 iterations, requiring

about 30–45 s for analyses based on the barley marker data,

and between 2 and 3 min for the dense marker data.
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Figure 1 depicts the posterior means of marker effects

averaged over the 50 replicated datasets plotted against the

marker indices for simulation based on the barley marker

data under the four hyper-parameter settings namely v ¼
5 ; s ¼ 0:1 for panel (a) v ¼ 5 ; s ¼ 0:25, for panel (b),

v ¼ 5 ; s ¼ 0:5 for panel (c), and v ¼ 2:5 ; s ¼ 0:1 for

panel (d). The broken horizontal lines indicate the per-

mutation-based significance thresholds for declaring QTLs

based on 100 phenotype permutations based on a single

phenotypic data replicate, and significance level a ¼ 0:1.

It is clear from Fig. 1a and d that good separation

between actual QTLs and redundant loci can be enforced

by setting the hyper-parameter s to be small (typically in

the range ½0:05; 0:1�), at the cost of missing the covariance

structure. The magnitude of noisy signals tends to amplify

with increasing s (Fig. 1b, c), thereby increasing the model

proneness to false discoveries.

Figure 2a shows a typical plot of the posterior means of

genetic effects under the simulated dense marker map, with

a suitable hyper-parameter tuning for good separation

between QTL and non-QTL loci, namely ðv ¼ 5 ; s ¼
0:05Þ . A zoom in the estimated effects of the first 67 loci

(Fig. 2b) reveals that the model-implied QTL positions

correspond to the simulated ones. A zoom in the estimated

effects of non-QTLs loci, namely over loci 70–300

(Fig. 2c) discloses a positive correlation between the pos-

terior estimates of genetic effects at neighboring loci,

which is further corroborated by the posterior autocorre-

lation function (ACF) or ‘‘lagged correlation’’ of marker

effects produced using the R’s built-in autocorrelation

function acf (R Development Core Team 2011), and dis-

played in Fig. 2d. In this context, the ACF function at lag k,

rk, indicates the degree of dependence between genetic

effects of loci that are k units of distance apart from each

other, and is defined by rk ¼
Pp�k

i¼1
ðbi��bÞ ðbiþk��bÞPp

i¼1
ðbi��bÞ

where

�b ¼ ð
Pp

i¼1 biÞ=n. In time series analysis, the plot of the

ACF function as a function of lag is called correlogram.

The R’s built-in autocorrelation function acf() produces a

correlogram along with 95 % confidence bounds for

declaring the significance of the autocorrelation at a spe-

cific lag k\p.

A key feature of our algorithm is its ability to provide

accuracy estimates (standard deviations), which can be useful

in subsequent inferences. Table 1 gives the posterior modes

of genetic effects, along with accuracy estimates in the form

of standard deviations derived from the 1,000 9 1,000 pos-

terior covariance matrix, R̂b, for the four major loci.

Fig. 1 Posterior modes of QTL

effects averaged over 50

replicated datasets plotted

against marker numbers under

the different hyper-parameter

settings shown in the upper part

of each panel (a–d) for

simulations based on the barley

marker data. The broken
horizontal lines indicate the

permutation-based significance

thresholds for declaring QTLs

based on 100 phenotype

permutations
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Overall, the simulation results corroborate the ability of

our modeling approach to identify QTLs, while accounting

for the posterior covariance structure of genetic effects.

In Simulation study II below, we illustrate the imple-

mentation of the smoothing idea in our block-updating

pseudo-EM procedure, and compare the ensuing results to

those implied by the ‘‘no-smoothing’’ EM version of the

algorithm.

Simulation study II: smoothing

In this simulation study, we considered a synthetic dense

marker dataset simulated through the WinQTL

Cartographer 2.5 program and involving 100 BC progeny

and 500 evenly spaced markers (five times more markers

than individuals) over a single chromosome, with 1 cM

between consecutive markers. We generated the pheno-

typic values assuming five QTLs at loci 50, 125, 250, 350

and 480 with respective effects -2.5, 3, -4, -3 and 4. In

the data simulation process, the intercept was set to zero

and the residual variance to 4, yielding a rough heritability

of 0.70. We analyzed the simulated data using our block

updating EM and pseudo-EM algorithms (i.e., without and

with smoothing). In the latter case, the smoothing param-

eter u was set to 10�6. The reported results are based on

the hyper-parameter tuning ðv ¼ 5; s ¼ 0:1Þ.
Figure 3 displays a typical plot of the posterior modes of

genetic effects against the marker indices for the block

updating EM (a) and pseudo-EM (c) algorithms. The cor-

responding ACFs are plotted in panels (b) and (d),

respectively.

As can be seen from Fig. 3, the model was effective at

identifying the QTL loci in both no-smoothing and

smoothing versions of the procedure. The ACF functions in

panels (b) and (b) suggest a clear dependence between the

genetic effects of adjacent and nearby loci, the dependency

being stronger in the ‘‘smoothing version’’ of the procedure

as expected.

Table 1 True values, posterior modes and accuracy estimates of

genetic effects as standard deviations derived from the posterior

covariance matrix R̂b for the four major loci namely, locus 4, 25, 50

and 65 for the simulated dense marker map

Marker index True effect Posterior mode SD

4 2.5 2.21 0.29

25 -2.5 -2.31 0.10

50 4 3.85 0.37

60 -4 -4.22 0.31

Each locus is identified by its marker index or marker number

Fig. 2 a A typical plot of the

posterior modes of genetic

effects under the simulated

dense marker map, under a

suitable hyper-parameter tuning

ðv ¼ 5 ; s ¼ 0:05Þ for good

separation between QTL and

non-QTL loci. b A zoom in the

first 67 markers showing the

estimated QTL positions which

correspond to the true positions

assumed when simulating the

data simulation process. c A

zoom in estimates of allegedly

spurious effects over the

positions 70–300 illustrating the

posterior correlation structure.

d Posterior autocorrelation

function (ACF) of marker effect

estimates produced using the

R’s built-in autocorrelation

function acf(). The dotted
horizontal lines are the 95 %

confidence bounds. Significant

autocorrelations are indicated

by the vertical lines crossing the

dashed horizontal ones
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Real data analysis

In this section, we use our block-updating EM-based

method (without smoothing) to analyze the genetic basis of

the time to heading in barley using real-world data from

North American Genome Mapping project described in the

previous section. The genotypic trait of interest is the

number of days to heading averaged over 25 different

environments. The data involves 127 markers and 145

doubled haploid lines after 5 individuals with missing

phenotype have been omitted as pointed out above. The

phenotypic trait values were standardized to have mean

zero and unit variance, and the few missing genotypes were

imputed with random draws from Bernoulli (0.5) before the

analysis. The reported results are based on the hyper-

parameter tuning ðv ¼ 5; s ¼ 0:05Þ.
We used the extended Bayesian LASSO (EBL; Muts-

hinda and Sillanpää 2010) as benchmark for comparison.

We also required Bayes factors (BF; Kass and Raftery

1995; Yi et al. 2007) within SSVS (George and McCulloch

1993; Yi et al. 2003) to evaluate the strength of posterior

evidence for including versus not including a particular

predictor (locus) in the model. Details on the prior speci-

fication for the EBL and SSVS are given in ESM, appendix

D. The BUGS code for fitting the EBL to the data is

available from Genetics as a supplement to Mutshinda and

Sillanpää (2010). The BUGS code for SSVS is provided in

ESM, appendix F. The a priori inclusion probability was

set to 0.2 (i.e., 0.25 prior odds for inclusion) for all loci.

Here, the BF statistic is nothing but the ratio of the

posterior odds to the prior odds for including (H1) versus

not including (H2) a particular locus in the model. In other

words, the BF statistic evaluates the amount by which the

prior odds for inclusion of a locus in the model versus its

exclusion are changed into posterior odds by the data (i.e.,

Posterior Odds ¼ Prior Odds � BF). The BF factor for

H1 versus H2 is often interpreted on the following scale due

to Jeffreys (1961). BF \ 1: evidence against H1,

1 \ BF B 3: evidence for H1 no worth than a bare men-

tion, 3 \ BF B 10: strong evidence for H1, BF [ 10:

decisive evidence for H1.

For both EBL and SSVS, we ran 20,000 MCMC itera-

tions of two chains, discarding the first 5,000 iterations as

burn-in and thinning the remainder to each tenth sample.

We assessed the convergence by visually inspecting the

mixing of the Markov chains through their traceplots. The

20,000 MCMC iterations took 3,000 s for the EBL and

2,800 s for SSVS.

Figure 4 shows the posterior means of (absolute) genetic

effects under the EBL (black circles) and the block-

Fig. 3 A typical plot of the

posterior modes of genetic

effects for the block updating

EM procedure a without and

c with smoothing, based on the

simulated data involving 500

markers and 100 individuals.

The corresponding

autocorrelation functions

(ACFs) produced using the R’s

built-in function acf() are shown

in panels (b) and (d),

respectively. The dotted
horizontal lines in panels

(b) and (d) are the 95 %

confidence bounds. Significant

autocorrelations are indicated

by the vertical lines crossing the

confidence bounds. The

simulated QTL loci were 50,

125, 250, 350 and 480 with

respective QTL effects -2.5, 3,

-4, -3 and 4

Theor Appl Genet (2012) 125:1575–1587 1583

123



updating EM procedure (grey circles). The dashed hori-

zontal line indicates the permutation-based cutoff effect-

size for declaring QTLs based of 100 phenotype permu-

tations under the block-updating EM approach.

The results of the block-updating EM procedure and the

EBL were broadly consistent, with loci 6, 9, 12, 33, 40, 47,

63, 86 and 115 emerging as important predictors of the

number of days to heading under both models. The SSVS-

induced posterior inclusion probabilities for these loci were

broadly high, with Bayes factors implying a decisive sup-

port for their inclusion in the model.

Recently, Knürr et al. (2011) analyzed the Tinker et al.

(1996) data for the same phenotype (time to heading) using

two MCMC-based methods namely, SSVS and their newly

introduced shrinkage approach based on a mixture of uni-

form priors. They obtained very similar results (see their

Table 1) to those implied by EBL and our swift block-

updating EM procedure.

The estimates of the intercept and the residual variances

under the block-updating EM were, respectively, l̂ ¼
� 0:13 and r̂2

0 ¼ 0:14, the corresponding values under EBL

being respectively l̂ ¼ � 0:11 and r̂2
0 ¼ 0:22. As expected,

the block-updating EM procedure was much faster, pro-

viding the results within 1 min. The results of our block-

updating EM procedure were robust to the starting values,

something which is always at issue in iterative approaches

(Xu 2007). This nice feature of our block updating EM

procedure is presumably due to the explicit account of the

covariance structure of genetic effects.

Discussion

We have proposed fast EM and pseudo-EM-based procedures

for Bayesian shrinkage estimation of QTLs, drawing on a

block-updating design to accommodate the posterior

covariance structure of genetic effects which involves accu-

racy estimates. In the case where genetics effects are assumed

to be dependent in their joint prior, we have called our

algorithm pseudo-EM algorithm owing to its similarity with

dependency network models where similar Gibbs sampling

algorithms are often called pseudo-Gibbs algorithms (Heck-

erman et al. 2000; Makhuvha et al. 1997). The most well-

known application of a pseudo-Gibbs algorithm in genetics is

a PHASE haplotyping method (Stephens et al. 2001).

Simulation results demonstrated the effectiveness of our

block-updating EM procedure for QTL mapping. This

approach is particularly suitable in the presence of highly

correlated loci as methods that independently update the

model effects tend to select only one locus from a group of

highly correlated ones (Zou and Hastie 2005), with the

tendency to select different loci in different model runs

with the same data. The ability to accommodate the pos-

terior covariance structure of genetic effects keeps our

block-updating approach afar from this flaw. It has been

suggested (Kabán 2007) that a proper account of the

covariance structure helps enhance the robustness of the

model along with its predictive performance.

We discussed the idea of smoothing intended to enforce

the dependency between genetic effects of nearby loci on

the same chromosome through the prior specification, for

which the pseudo-EM algorithm is appropriate, and dem-

onstrated its implementation with simulated inbred line

cross data. The smoothing approach may be even more

useful in outbred populations where the LD may arise from

many different sources (Conti and Witte 2003; Sillanpää

and Bhattacharjee 2005).

We used our new block-updating EM procedure to ana-

lyze the genetic architecture of the number of days to heading

in Barley, using data from North American Genome Map-

ping project (Tinker et al. 1996). We also fitted the extended

Bayesian LASSO (EBL; Mutshinda and Sillanpää 2010) to

the same data for the sake of comparison, and required

SSVS-induced Bayes factors to evaluate the strength of

posterior evidence for including each locus in the model.

The results were broadly consistent between the block-

updating EM-based approach and the MCMC-based EBL

(Fig. 4), with the former being by far faster. In both cases,

loci 6, 9, 12, 33, 40, 47, 63, 86 and 115 appeared to

Fig. 4 Posterior means of genetic effects under the MCMC-based

EBL (black circles) and posterior modes under the block updating

EM procedure (grey circles) for the barley data, using the number of

days to heading as phenotypic trait of interest. The dashed horizontal
line indicates the permutation-based cutoff effect-size for declaring

QTLs based of 100 phenotype permutations under the block-updating

EM approach
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contribute to the variation in the time to heading. The

SSVS-induced Bayes factors for the inclusion versus

exclusion of each of these loci were large enough to imply

a decisive support for their inclusion in the model

according to the Jeffreys’ scale (1961).

Yi and Banerjee (2009) proposed an apparently block-

updating EM algorithm for QTL mapping based on the

iterated weighted least squares (IWLS) method, with a

diagonal weighting matrix involving a different variance

parameter for each marker effect as required for differential

shrinkage across loci. However, their method treats the

regression coefficients independently before a new itera-

tion, by contrast to the methodology proposed here, where

the covariance structure is meant to be updated alongside

the regression parameters.

The posterior covariance structure of genetic effects can be

easily incorporated into a Monte Carlo (MC) analysis

involving functions of genetic effects such as breeding val-

ues. The MC analysis in this case consists in repeatedly

simulating from the approximate joint posterior of genetic

effects, and evaluating the quantity of interest. This yields an

empirical distribution of the quantity of interest upon which

statistical conclusions can be based. For example, the prob-

ability for a genetic effect to exceed a specific threshold can

be evaluated by the proportion of simulated samples where

the effect exceeds the threshold (cf. Hoti and Sillanpää 2006).

The tuning of hyper-parameter remains a critical issue for

the performance of EM-based algorithms, in particular in the

QTL mapping context as pointed out by Yi and Banerjee

(2009) and Xu (2010). There is no trivial solution to this

problem, since the most suitable hyper-parameter values are

typically data-dependent. In our new approach, the hyper-

parameters can be duly tuned to enforce either a clear

separation between QTL and non-QTL loci by setting the

hyper-parameter s to be small (typically a value in the range

0.05–0.1). The dependence between genetic effects at nearby

loci can also be enforced through the pseudo-EM version.

Whilst good separation is the point of QTL mapping, an

account for the posterior covariance structure of genetic

effects is important for enhanced phenotype prediction.

As a cautionary remark, the covariance structure in

focus here refers to associations between genetic effects in

their joint distribution, which is not to be confused with the

interaction effects involving two or more genes, known as

epistasis (Carlborg and Andersson 2002; Xu and Jia 2007).

The block-updating EM algorithm (the no-smoothing ver-

sion) can be tailored for epistatic search with K 2 <q x q,

where q ¼ ðp2 þ pÞ=2 is the total number of main and pair-

wise epistatic effects (cf. Li and Sillanpää 2012a). This

may provide a better alternative to the single-component

updating EM algorithm for epistatic search, but this

requires empirical assessment.

In conclusion, the block-updating EM and pseudo-EM

methods proposed in this paper provide expedient alter-

natives to full Bayesian estimation in high-dimensional

models where the computational challenges associated

with MCMC are typically awkward.

Acknowledgments The authors wish to thank Hanni Kärkkäinen,
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O’Hara RB, Sillanpää MJ (2009) A review of Bayesian variable

selection methods: what, how and which. Bayesian Anal 4:85–118

R Development Core Team (2011) R: A language and environment

for statistical computing, reference index version 2.13.2.

R Foundation for Statistical Computing, Vienna, Austria. ISBN

3-900051-07-0. http://www.R-project.org

Sen S, Churchill GA (2001) A statistical framework for quantitative

trait mapping. Genetics 159:371–387

Shepherd R, Meuwissen THE, Woolliams JA (2010) Genomic

selection and complex trait prediction using a fast EM algorithm

applied to genome-wide markers. BMC Bioinform 11:529
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